【5】RNN 기본 다지기 (10) 썸네일형 리스트형 시계열 데이터 분석을 위한 RNN 지금까지 살펴본 신경망 모델의 구조를 단순화시킨다면 아래와 같이 생각할 수 있다. 즉 화살표 오른쪽에 있는 그림처럼 신경망 모델을 표현 할 수 있다. 파란 동그라미가 입력으로 들어가면 네모박스에 있는 은닉층들을 통과하여 파란 동그라미로 출력이 된다. 여기서 하나의 네모 박스 안에는 여러개의 가중치(weights)가 포함되었다고 이해할 수 있다. 이제 우리는 단순화시킨 오른쪽 그림을 사용해 RNN을 이해해 볼 것이다. 텍스트 데이터를 이용해 예시를 들어보겠다. 한 문장에 대한 다음 문장을 예측하는 모델을 만든다고 가정해보자. 그렇다면 입력데이터는 하나의 문장이 될 것이고 출력데이터도 마찬가지로 예측한 하나의 문장일 것이다. 아래의 그림을 보자. 입력으로 “오늘 뭐 먹을까?”라는 하나의 문장이 들어왔을때 신.. 순환 신경망의 출현 : 시계열 데이터 분석의 이해 지금까지 다뤘던 인공신경망은 사실 독립적인 데이터를 다루기에 적합하다. 그러나 순서가 있는 데이터를 독립적으로 본다면 어떻게 될까? 데이터 속의 관계성이 깨질것이며 이는 곧 정보의 손실을 의미한다. 이러한 문제를 해결하기 위해 등장한 것이 바로 순환신경망(Recurrent Neural Network, RNN)이다. 간단히 말하면 연속된 데이터를 다루는데 적합한 신경망이다. 이번 장에서는 RNN에 대해서 알아볼 차례이다. 그 전에 연속된 데이터가 무엇인지 먼저 설명하겠다. 이는 RNN의 재료가 될 뿐만 아니라 RNN의 구조를 이해하는데 도움이 될 것이다. "시계열 데이터 분석의 이해" 순서가 있는 데이터를 일반적으로 순차 데이터(sequential data)라고 부른다. 순차 데이터는 숫자와 기호 모두 포.. 이전 1 2 다음